17 resultados para Neuroprotection

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In multiple sclerosis, the immune system attacks the white matter of the brain and spinal cord, leading to disability and/or paralysis. Myelin, oligodendrocytes and neurons are lost due to the release by immune cells of cytotoxic cytokines, autoantibodies and toxic amounts of the excitatory neurotransmitter glutamate. Experimental autoimmune encephalomyelitis (EAE) is an animal model that exhibits the clinical and pathological features of multiple sclerosis. Current therapies that suppress either the inflammation or glutamate excitotoxicity are partially effective when administered at an early stage of EAE, but cannot block advanced disease. In a multi-faceted approach to combat EAE, we blocked inflammation with an anti-MAdCAM-1 (mucosal addressin cell adhesion molecule-1) monoclonal antibody and simultaneously protected oligodendrocytes and neurons against glutamate-mediated damage with the -amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate antagonist 2,3-dihydroxy-6-nitro-7- sulfamoylbenzo(f)quinoxaline (NBQX) and the neuroprotector glycine–proline–glutamic acid (GPE; N-terminal tripeptide of insulin-like growth factor). Remarkably, administration at an advanced stage of unremitting EAE of either a combination of NBQX and GPE, or preferably all three latter reagents, resulted in amelioration of disease and repair of the CNS, as assessed by increased oligodendrocyte survival and remyelination, and corresponding decreased paralysis, inflammation, CNS apoptosis and axonal damage. Each treatment reduced the expression of nitric oxide and a large panel of proinflammatory and immunoregulatory cytokines, in particular IL-6 which plays a critical role in mediating EAE. Mice displayed discernible improvements in all physical features examined. Disease was suppressed for 5 weeks, but relapsed when treatment was suspended, suggesting treatment must be maintained to be effective. The above approaches, which allow CNS repair by inhibiting inflammation and/or simultaneously protect neurons and oligodendrocytes from damage, could thus be effective therapies for multiple sclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• Bipolar disorder follows a staged trajectory in which persistence of illness is associated with a number of clinical features such as progressive shortening of the inter-episode interval and decreased probability of treatment response.

• This neuroprogressive clinical process is reflected by both progressive neuroanatomical changes and evidence of cognitive decline.

• The biochemical foundation of this process appears to incorporate changes in inflammatory cytokines, cortisone, neurotrophins and oxidative stress. There is a growing body of evidence to suggest that these markers may differ between the early and late stages of the disorder.

• The presence of a series of tangible targets raises the spectre of development of rational neuroprotective strategies, involving judicious use of current therapies and novel agents. Most of the currently used mood stabilisers share effects on oxidative stress and neurotrophins, while novel potentially neuroprotective agents are being developed. These developments need to be combined with service initiatives to maximise the opportunities for early diagnosis and intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zn and DHA have putative neuroprotective effects and these two essential nutrients are known to interact biochemically. We aimed to identify novel protein candidates that are differentially expressed in human neuronal cell line M17 in response to Zn and DHA that would explain the molecular basis of this interaction. Two-dimensional gel electrophoresis and MS were applied to identify major protein expression changes in the protein lysates of human Ml7 neuronal cells that had been grown in the presence and absence of Zn and DHA. Proteomic findings were further investigated using Western immunoblot and real-time PCR analyses. Four protein spots, which had significant differential expression, were identified and selected for in-gel trypsin digestion followed by matrix-assisted laser desorption ionisation MS analysis. The resultant peptide mass fingerprint for each spot allowed their respective identities to be deduced. Two human histone variants H3 and H4 were identified. Both H3 and H4 were downregulated by Zn in the absence of DHA (Zn effect) and upregulated by DHA (DHA effect) in the presence of Zn (physiological condition). These proteomic findings were further supported by Western immunoblot and real-time PCR analyses using H3- and H4-specific monoclonal antibodies and oligonucleotide primers, respectively. We propose that dietary Zn and DHA cause a global effect on gene expression, which is mediated by histones. Such novel information provides possible clues to the molecular basis of neuroprotection by Zn and DHA that may contribute to the future treatment, prevention and management of neurodegenerative diseases such as Alzheimer's disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory diseases of the central nervous system (CNS) characterized by localized areas with demyelination. Disease is believed to be an autoimmune disorder mediated by activated immune cells such as T- and B-lymphocytes and macrophages/microglia. Lymphocytes are primed in the peripheral tissues by antigens, and clonally expanded cells infiltrate the CNS. They produce large amounts of inflammatory cytokines, nitric oxide (NO) that lead to demyelination and axonal degeneration. Although several studies have shown that oligodendrocytes (OLGs), the myelin-forming glial cells in the CNS, are sensitive to cell death stimuli, such as cytotoxic cytokines, anti-myelin antibodies, NO, and oxidative stress, in vitro, the mechanisms underlying injury to the OLGs in MS/EAE remain unclear. The central role of glutamate receptors in mediating excitotoxic neuronal death in stroke, epilepsy, trauma and MS has been well established. Glutamate is the major excitatory amino acid transmitter within the CNS and it's signaling is mediated by a number of postsynaptic ionotropic and metabotropic receptors. Inflammation can be blocked with anti-cell adhesion molecules MAb, simultaneously protected oligodendrocytes and neurons against glutamate-mediated damage with the AMPA/kainate antagonist NBQX, and the NMDA receptor antagonist GPE, could thus be effective therapies for multiple sclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Apoptosis is an important contributing factor during neuronal death in a variety of neurodegenerative disorders, including multiple sclerosis, Parkinson's disease and sciatic nerve injury. Whereas several clinical and preclinical studies have focused on the neuroprotective effects of caspase inhibitors, their clinical benefits are still unclear. Here, we discuss novel alternative strategies to protect neuronal cells from apoptotic death using members of the inhibitors of apoptosis (IAP) family. We specifically review the different roles of survivin, which is an important member of the IAP family that serves a dual role in the inhibition of apoptosis as well as a vital role in mitosis and cell division. Due to the various roles of survivin during cell division and apoptosis, targeting this protein illustrates a new therapeutic window for the treatment of neurodegenerative diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: To review the evidence that supports early intervention in the treatment of bipolar disorder.

Background: Bipolar disorder is a pleomorphic condition, with varying manifestations that are determined by a number of complex factors including the ‘‘stage’’ of illness. It is consequently a notoriously difficult illness to diagnose and as a corollary is associated with lengthy delays in recognition and the initiation of suitable treatment.

Methods: A literature search was conducted using MEDLINE augmented by a manual search.

Results: Emerging neuroimaging data suggests that, in contrast to schizophrenia, where at the time of a first-episode of illness there is already discernible volume loss, in bipolar disorder, gross brain structure is relatively preserved, and it is only with recurrences that there is a sequential, but marked loss of brain volume. Recent evidence suggests that both pharmacotherapy and psychotherapy are more effective if instituted early in the course of bipolar disorder, and that with multiple episodes and disease progression there is a noticeable decline in treatment response.

Conclusions: Such data supports the notion of clinical staging, and the tailored implementation of treatments according to the stage of illness. The progressive nature of bipolar disorder further supports the concept that the first episode is a period that requires energetic broad-based treatment, with the hope that this could alter the temporal trajectory of the illness. It also raises hope that prompt treatment may be neuroprotective and that this perhaps attenuates or even prevents the neurostructural and neurocognitive changes seen to emerge with chronicity. This highlights the need for early identification at a population level and the necessity of implementing treatments and services at a stage of the illness where prognosis is optimal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the absence of clear targets for primary prevention of many psychiatric illnesses, secondary prevention becomes the most feasible therapeutic target, and is best encompassed by the concept of early intervention. This construct encompasses the goals of minimising diagnostic delay and the prompt initiation of clinically appropriate therapy. This paper develops the rationale for early intervention in bipolar disorder. Three interrelated themes are discussed; the clinical data supporting the value of prompt diagnosis and treatment in bipolar disorder, the putative biochemical mechanisms underlying the pathophysiological processes, and the parallel concept of neuroprotection, and the developing neuroimaging data that supports early intervention. Early initiation of appropriate therapy may potentially facilitate improved clinical outcomes, and further might allow the secondary prevention of the sequelae of untreated illness, which include the deleterious impact on family relationships, psychosexual and vocational development, identity and self-concept and self-stigma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurocognitive impairment is being increasingly recognized as an important issue in patients with cancer who develop cognitive difficulties either as part of direct or indirect involvement of the nervous system or as a consequence of either chemotherapy-related or radiotherapy-related complications. Brain radiotherapy in particular can lead to significant cognitive defects. Neurocognitive decline adversely affects quality of life, meaningful employment, and even simple daily activities. Neuroprotection may be a viable and realistic goal in preventing neurocognitive sequelae in these patients, especially in the setting of cranial irradiation. Lithium is an agent that has been in use for psychiatric disorders for decades, but recently there has been emerging evidence that it can have a neuroprotective effect.

This review discusses neurocognitive impairment in patients with cancer and the potential for investigating the use of lithium as a neuroprotectant in such patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Despite more that 60 years of clinical experience, the effective use of lithium for the treatment of mood disorder, in particular bipolarity, is in danger of becoming obsolete. In part, this is because of exaggerated fears surrounding lithium toxicity, acute and long-term tolerability and the encumbrance of life-long plasma monitoring. Recent research has once again positioned lithium centre stage and amplified the importance of understanding its science and how this translates to clinical practice.

Objective: The aim of this paper is to provide a sound knowledge base as regards the science and practice of lithium therapy.

Method: A comprehensive literature search using electronic databases was conducted along with a detailed review of articles known to the authors pertaining to the use of lithium. Studies were limited to English publications and those dealing with the management of psychiatric disorders in humans. The literature was synthesized and organized according to relevance to clinical practice and understanding.

Results: Lithium has simple pharmacokinetics that require regular dosing and monitoring. Its mechanisms of action are complex and its effects are multi-faceted, extending beyond mood stability to neuroprotective and anti-suicidal properties. Its use in bipolar disorder is under-appreciated, particularly as it has the best evidence for prophylaxis, qualifying it perhaps as the only true mood stabilizer currently available. In practice, its risks and tolerability are exaggerated and can be readily minimized with knowledge of its clinical profile and judicious application.

Conclusion: Lithium is a safe and effective agent that should, whenever indicated, be used first-line for the treatment of bipolar disorder. A better understanding of its science alongside strategic management of its plasma levels will ensure both wider utility and improved outcomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) promote histone posttranslational modifications, which lead to an epigenetic alteration in gene expression. Aberrant regulation of HATs and HDACs in neuronal cells results in pathological consequences such as neurodegeneration. Alzheimer's disease is the most common neurodegenerative disease of the brain, which has devastating effects on patients and loved ones. The use of pan-HDAC inhibitors has shown great therapeutic promise in ameliorating neurodegenerative ailments. Recent evidence has emerged suggesting that certain deacetylases mediate neurotoxicity, whereas others provide neuroprotection. Therefore, the inhibition of certain isoforms to alleviate neurodegenerative manifestations has now become the focus of studies. In this review, we aimed to discuss and summarize some of the most recent and promising findings of HAT and HDAC functions in neurodegenerative diseases.